

INDICE

TSA Tecnologie speciali applicate	2
CARATTERISTICHE DEI MOTORI PNEUMATICI POTENZA VELOCITÀ A VUOTO VELOCITÀ ALLA MASSIMA POTENZA COPPIA ALLA MASSIMA POTENZA COPPIA DI SPUNTO COPPIA DI STALLO	
METODI DI GESTIONE DELLE PRESTAZIONI DEL MOTORE REGOLATORE DI PRESSIONE REGOLAZIONE DELLA PORTATA	4
CONDIZIONI DELL'ARIA D'ALIMENTAZIONE CONSUMO QUALITÀ DELL'ARIA	4
LIMITAZIONI DELLA LINEA D'ARIA	5
SCHEMA PNEUMATICO (alimentazione – comando motore)	5
GRUPPI TRATTAMENTO ARIA VALVOLE DI COMANDO	6
MANUALE O PNEUMATICO	7
SILENZIATORI	8
FILTRO DISOLEATORE/SILENZIATORE	9
I NOSTRI PRODOTTI	10

CARATTERISTICHE DEI MOTORI PNEUMATICI

La potenza in uscita di un motore pneumatico varia in funzione della velocità e della coppia di torsione. Le prestazioni di un motore pneumatico dipendono dalla pressione dell'aria di alimentazione misurata all'ingresso del motore; pertanto con una semplice regolazione dell'aria d'ingresso i valori di coppia e velocità di un motore pneumatico possono essere facilmente modificati.

Il motore pneumatico si sceglie in base a tre parametri fondamentali: POTENZA, VELOCITÀ e COPPIA.

POTENZA

I motori pneumatici producono una curva di potenza caratteristica il cui valore massimo si ottiene a circa il 50% della sua velocità a vuoto. La coppia prodotta viene denominata coppia alla massima potenza.

VELOCITÀ A VUOTO

La velocità a vuoto del motore pneumatico viene definita quando non vi è alcun carico sull'albero d'uscita pertanto non produce nessuna coppia (momentotorcente). Aumentando il carico sull'albero la velocità diminuisce in misura inversamente proporzionale alla coppia.

VELOCITÀ ALLA MASSIMA POTENZA

La velocità alla massima potenza si ottiene quando il motore raggiunge la coppia alla massima potenza.

COPPIA ALLA MASSIMA POTENZA

La coppia alla massima potenza si ottiene a circa il 50% della velocità a vuoto che corrisponde alla massima potenza del motore.

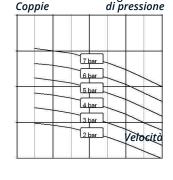
COPPIA DI SPUNTO

La coppia di spunto è la coppia che un motore fornisce all'albero sottocarico all'avvio con la massima alimentazione d'aria.

COPPIA DI STALLO

La coppia di stallo è la coppia che il motore fornisce all'albero durante la sua rotazione fino a completo bloccaggio.

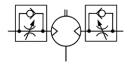
oer rotazione destrorsa oer rotazione sinistrorsa



METODI DI GESTIONE DELLE PRESTAZIONI DEL MOTORE

Il controllo della velocità e della coppia di torsione di un motore pneumatico si ottiene regolando la pressione o limitando la portata dell'aria.

REGOLATORE DI PRESSIONE


La velocità e la potenza possono anche essere ridotti installando un regolatore di pressione. Un regolatore di pressione sempre collegato sul foro di entrata controlla la pressione d'aria al motore. Usando un regolatore di pressione la coppia di uscita sull'albero ne sarà influenzata, così facendo la coppia di spunto sarà meglio controllata. Quando la velocità e la coppia di torsione devono essere controllate, la migliore configurazione è utilizzare un regolatore di pressione in alimentazione al motore e una valvola di regolazione di flusso sullo scarico. In questo senso ogni punto nel grafico di coppia -velocità può essere fissato esattamente.

Regolazione

Coppie Strozzamento G bar No throttle G bar Ingresso strozzato Scarico strozzato Velocità

METODO DI STROZZAMENTO Strozzamento dell'ingresso, motore bidirezionale

REGOLAZIONE DELLA PORTATA

Disponendo di un regolatore di portata (si può regolare la velocità sia in alimentazione che in scarico. Si consiglia sullo scarico per garantire una coppia di spunto leggermente più elevata. La differenza nel grafico tra le due soluzioni.

CONDIZIONI DELL'ARIA D'ALIMENTAZIONE

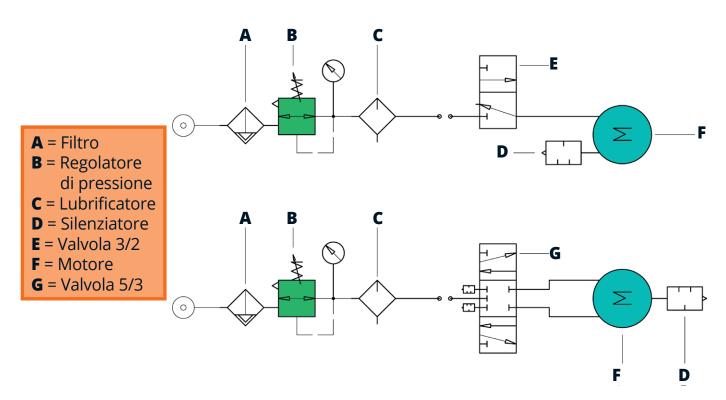
CONSUMO

Il consumo di aria per un motore pneumatico è proporzionale alla velocità e perciò è massimo alla velocità a vuoto.

Il consumo di aria è misurato in Nl/s, ma per convenzione si adotta l/s.

QUALITA' DELL'ARIA

Per assicurare le condizioni di lavoro ottimali ai motori pneumatici è necessario garantire una corretta alimentazione e scarico dell'aria. Per assicurare un buon funzionamento si consiglia l'istallazione di un gruppo trattamento aria (filtro 5 micron, regolatore e lubrificatore se il motore non è esente da lubrificazione) adeguato al consumo del motore.



LIMITAZIONI DELLA LINEA D'ARIA

Limitazioni della linea d'aria all'ingresso del motore provocherà la perdita di prestazione. E' importante assicurarsi che la pressione d'aria voluta sia disponibile al motore durante il funzionamento. Rispettare sempre il passaggio aria, perchè tubazioni troppo piccole possono causare cali di pressione. La tubazione di scarico deve avere una dimensione maggiore di quella di alimentazione. E' consigliabile collegare i tubi di scarico ad un adeguato filtro disoleatore con silenziatore incorporato, per consentire un'adeguata lubrificazione senza saturare l'ambiente d'aria inquinata.

SCHEMA PNEUMATICO (ALIMENTAZIONE – COMANDO MOTORE)

Funzionamento motore non reversibile con valvola 3/2

Funzionamento motore non reversibile con valvola 5/3 a centri chiusi

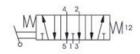
ACCESSORI PNEUMATICI

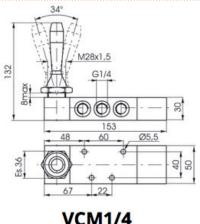
TSA propone un programma di componenti pneumatici per il trattamento dell'aria e il controllo dei motori pneumatici delle migliori marche come SMC, BOSCH, NORGREN, WILKERSON. Questo programma è composto da unità trattamento aria, valvole e silenziatori. Le connessioni disponibili vanno da G1/4" a G2".

GRUPPI TRATTAMENTO ARIA

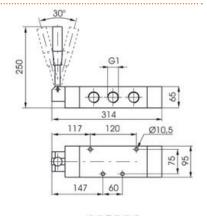
Tutti i filtri utilizzati hanno lo scarico automatico della condensa, le unità FRL sono pronte da installare e completi di manometro.

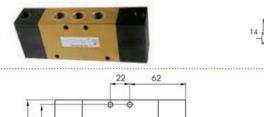
Modelli	TFRL3/8	TFRL1/2	TFRL3/4	TFRL1	TFRL2			
Connessioni	3/8"	1/2"	3/4"	1"	2"			
Max. pressione di lavoro	10 Bar	10 Bar	10 Bar	10 Bar	20 Bar			
Max. temperatura d'esercizio	-5 a +60°C							
Filtrazione standard	8 Micron							
Portata l/sec.	56,6	63,2	67,5	149	660			




VALVOLE DI COMANDO MANUALE O PNEUMATICO

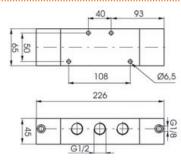
Facili e veloci da installare le valvole preselezionate per i motori pneumatici TSA sono valvole 5 vie 3 posizioni a centri aperti in posizione neutra con comando a leva o pneumatico.

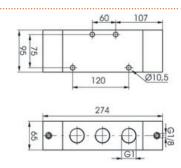

Modelli	VCM1/4	VCM1/2	VCM1	VCP1/4	VCP1/2	VCP1	
Connessione	G1/4"	G1⁄2"	G1"	G1/4"	G½"	G1"	
Fluido			Aria filtrata	e lubrificata			
Pressione max. d'esercizio			10	bar			
Temperatura			-5°C -	+70°C			
Portata a 6 bar con Δ p = 1 Nl/min	1280	3500	6500	1280	3000	6500	
Ø Passaggio nominale	8mm	15mm	20mm	8mm	15mm	20mm	
Materiale corpo		Alluminio					
Peso Kg.	0,7	2	5	0,6	1,7	4,2	
Pressione minima di pilotaggio	-	-	-	3 bar	3 bar	3 bar	
Connessione pilotaggio	-	-	-	G1/8"	G1/8"	G1/8"	



01/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2 61/2




VCM1/2

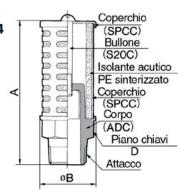

VCM1

VCP1/2

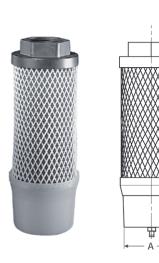
VCP1

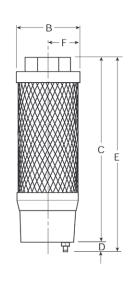

SILENZIATORI

Tutti i motori sono forniti con una porta di scarico filettato, che consente di applicare un silenziatore per ridurre il livello di rumorosità. Applicando un'ulteriore manichetta tra lo scarico ed il silenziatore, il livello di rumore può essere ridotto ulteriormente.



Modelli	S1/4	S3/8	S1/2	\$3/4	S1	S1 1/4
Connessione	1/4 NPT	3/8 NPT	½ NPT	¾ NPT	1 NPT	1 ¼ NPT
Riduzione rumorosità dB	>30 dB(A)					
Fluido	Aria compressa					
Temp. d'esercizio	+5° C – 60° C					
Corpo	Plastica	Plastica	Plastica	Acciaio+Platica	Acciaio+Platica	Acciaio+Platica




Dimensioni	S1/4	S3/8	S1/2	S3/4	S1	S1 1/4
Α	63	84	92	107	127	186
В	22	25	30	46	50	74
D	19	22	27	36	41	50

FILTRO DISOLEATORE/SILENZIATORE

Modelli	XMC-C4-000	XMC-C8-000	XMC-CB-000	S3/4	S1	S1 1/4		
Connessione	½ G	1 G	1 - 1/2 G	107	127	186		
Capacità vasca	2.2 fl. oz.	5 fl. oz.	5 fl. oz.	46	50	74		
Scolo	Manuale	22	27	36	41	50		
Disoleazione		99.9%						
Temperatura d'esercizio		2° C – 50° C						
Riduzione sonora	25 dB(A)							
Peso Kg.	0.4							

MATERIALI DI COSTRUZIONE

Coperchio filettato Nylon

Elemento filtro

Primario Panno borosilicato

Secondario Fibra PVC

Coperchio olio

di scarico Plastica

Supporto manicotto Plastica

Modelli	Α	В	С	D	E	F
XMC-C4-000	51	60	100	10	150.9	30
XMC-C8-000	51	60	148	10	198.9	30
XMC-CB-000	76	87	208	11	284	-

MOTORI PNEUMATICI

MOTORIDUTTORI

BRACCI TELESCOPICI

BRACCI ARTICOLATI

ACCESSORI

